Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The primacy of endozoochory for the maintenance and expansion of many woody plant populations is well known, but seed dispersal is not well understood for most species. This is especially true for rare species, where small population size and low fruit production can limit field- or observation-based experiments. Additionally, the effect of environmental heterogeneity on disperser movement is rarely investigated but has been shown to improve estimates of plant population spatial patterns and dynamics. We used simulation experiments to explore the effects of environmental heterogeneity and disperser movement on Lindera subcoriacea seed dispersal, a rare shrub from the southeastern United States with avian-dispersed seeds. Our experiments incorporated environmental heterogeneity and simulated disperser movement for five bird species, based on either landscape permeability or straight path rules. We anticipated that permeability-based movement would result in greater dispersal distances and seed dispersal effectiveness, which characterizes both quantity and quality. Generally, we did not find differences in seed dispersal between permeability and straight path experiments. However, we did find that permeability-based experiments had greater deposition into suitable habitat during flight (23 vs. 1%). These rare but longer distance depositions may be especially important for plants that are influenced by gap or interpopulation dynamics. We also found consistently greater dispersal into high quality habitats regardless of disperser species in permeability experiments, implying that incorporating species-specific assessments of landscape utilization (occupancy) could influence the effectiveness of seed dispersal. Our study suggests that including environmental heterogeneity in seed dispersal models can provide additional insights not provided by avian parameters (e.g., gut capacity, seed retention time, and flight speed) commonly used to inform dispersal models.

References Powered by Scopus

A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter

2841Citations
N/AReaders
Get full text

A standard protocol for describing individual-based and agent-based models

2254Citations
N/AReaders
Get full text

The ODD protocol: A review and first update

1965Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Just, M. G., Wall, W. A., Huskins, S. D., & Hohmann, M. G. (2024). Effects of Landscape Heterogeneity and Disperser Movement on Seed Dispersal. Ecologies, 5(2), 198–217. https://doi.org/10.3390/ecologies5020013

Readers over time

‘22‘24‘2500.511.52

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

75%

Researcher 1

25%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 3

75%

Environmental Science 1

25%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0