The discovery1 of buckminsterfullerene (C60) and its production in macroscopic quantities2 has stimulated a great deal of research. More recently, attention has turned towards other curved graphitic networks, such as the giant fullerenes (Cn, n > 100)3,4 and carbon nanotubes5-8. A general mechanism has been proposed 9 in which the graphitic sheets bend in an attempt to eliminate the highly energetic dangling bonds present at the edge of the growing structure. Here, I report the response of carbon soot particles and tubular graphitic structures to intense electron-beam irradiation in a high-resolution electron microscope; such conditions resemble a high-temperature regime, permitting a degree of structural fluidity. With increased irradiation, there is a gradual reorganization of the initial material into quasi-spherical particles composed of concentric graphitic shells. This lends weight to the nucleation scheme proposed9 for fullerenes, and moreover, suggests that planar graphite may not be the most stable allotrope of carbon in systems of limited size. © 1992 Nature Publishing Group.
Mendeley helps you to discover research relevant for your work.