Nano-metals forming bacteria in Egypt. II. Efficacy towards biomolecules, ultrastructure, growth parameters, and eco-friendly therapeutic of soft rot/blackleg genera

0Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The nanoparticles (NPs) formed by Enterococcus thailandicus, Pseudomonas putida, Marinobacter hydrocarbonoclasticus, and P. geniculate were tested against soft rot/blackleg genera. The effects of NPs recorded on bacterial DNA, proteins, and carbohydrates concentration of Pectobacterium carotovorum subsp. carotovorum, Enterobacter cloacae (soft rot), and Dickeya solani (soft rot/blackleg). Treated cells showed degradation in isolated DNA, decreased proteins and carbohydrates concentration compared with untreated cells. Using Scanning Electron Microscope (SEM), the treated cells showed collapsed and small pits in the cell wall. Using Transmission Electron Microscope (TEM), internal changes showed penetration of NPs inside the tested bacterial cells, the appearance of periplasmic space, formation of vacuoles, and condensation of cytoplasm. Disease severity ex vivo of potato tuber infected with tested genera demonstrated that NPs treatment didn’t show any rotted tissue compared with untreated. The ability to uptake and accumulate FeNPs from the soil in potato (Solanum tuberosum) seedlings; Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) was used. It recorded an increase in iron content of treated potato (Solanum tuberosum) seedlings with NPs, compared with untreated. FeNPs can be used to control soft rot/blackleg diseases, instead of copper pesticides. It could be a new, approach for disease management and increase the plant’s nutritional value.

References Powered by Scopus

Antimicrobial effects of silver nanoparticles

4409Citations
N/AReaders
Get full text

Silver nanoparticles: Green synthesis and their antimicrobial activities

3398Citations
N/AReaders
Get full text

Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli

1632Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Shoeib, A. A., Ashmawy, N. A., Kamal, A., & Zaki, S. A. E. F. (2023). Nano-metals forming bacteria in Egypt. II. Efficacy towards biomolecules, ultrastructure, growth parameters, and eco-friendly therapeutic of soft rot/blackleg genera. Microbial Cell Factories, 22(1). https://doi.org/10.1186/s12934-023-02101-6

Readers over time

‘23‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

75%

Researcher 1

25%

Readers' Discipline

Tooltip

Environmental Science 2

40%

Agricultural and Biological Sciences 1

20%

Biochemistry, Genetics and Molecular Bi... 1

20%

Chemistry 1

20%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0