Learning debiased graph representations from the OMOP common data model for synthetic data generation

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Generating synthetic patient data is crucial for medical research, but common approaches build up on black-box models which do not allow for expert verification or intervention. We propose a highly available method which enables synthetic data generation from real patient records in a privacy preserving and compliant fashion, is interpretable and allows for expert intervention. Methods: Our approach ties together two established tools in medical informatics, namely OMOP as a data standard for electronic health records and Synthea as a data synthetization method. For this study, data pipelines were built which extract data from OMOP, convert them into time series format, learn temporal rules by 2 statistical algorithms (Markov chain, TARM) and 3 algorithms of causal discovery (DYNOTEARS, J-PCMCI+, LiNGAM) and map the outputs into Synthea graphs. The graphs are evaluated quantitatively by their individual and relative complexity and qualitatively by medical experts. Results: The algorithms were found to learn qualitatively and quantitatively different graph representations. Whereas the Markov chain results in extremely large graphs, TARM, DYNOTEARS, and J-PCMCI+ were found to reduce the data dimension during learning. The MultiGroupDirect LiNGAM algorithm was found to not be applicable to the problem statement at hand. Conclusion: Only TARM and DYNOTEARS are practical algorithms for real-world data in this use case. As causal discovery is a method to debias purely statistical relationships, the gradient-based causal discovery algorithm DYNOTEARS was found to be most suitable.

Cite

CITATION STYLE

APA

Schulz, N. A., Carus, J., Wiederhold, A. J., Johanns, O., Peters, F., Rath, N., … Gundler, C. (2024). Learning debiased graph representations from the OMOP common data model for synthetic data generation. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02257-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free