Investigation of mixing miscible liquids with high viscosity contrasts in turbulently stirred vessels using electrical resistance tomography

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The time required to attain a sufficient degree of homogeneity i.e., mixing time, is an important parameter in mixing processes. This paper presents results from a study employing an experimental approach to estimate mixing times for a miscible Newtonian liquid mixture system with high viscosity contrasts in a turbulent stirred vessel. An Electrical Resistance Tomography (ERT) based technique has been adopted to monitor dimensionless mixing time across a range of additive viscosities, impeller designs, sizes, and speed. Dimensional analysis has been used to interpret these mixing time results in terms of the magnitude of the bulk inertia forces relative to the initial viscous forces within the added fluid. Critical non-dimensional numbers, uniting the properties of the two liquids, have been proposed as the criterion for avoiding undesirable operating conditions under which the mixing time is much longer than that required for mixing fluids with similar properties. The work proposes novel correlations for mixing time and incorporates a new dimensionless group, thereby enabling a more nuanced and accurate characterisation of mixing behaviours. This research stands to contribute to energy saving and waste minimisation efforts in the industry. It provides insights for process designers and simulation engineers, propelling a leap forward in the design and operation of mixing processes when dealing with liquid systems that have significant viscosity differences.

References Powered by Scopus

Convergence properties of the Nelder-Mead simplex method in low dimensions

6254Citations
N/AReaders
Get full text

Applied potential tomography

671Citations
N/AReaders
Get full text

Study of solid-liquid mixing in agitated tanks through electrical resistance tomography

136Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Spatiotemporal distribution visualization of solid volume fraction during LiCl-KCl molten salt solidification by thermal-compensated electrical resistance tomography (tcERT)

0Citations
N/AReaders
Get full text

Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Mirfasihi, S., Basu, W., Martin, P., Kowalski, A., Fonte, C. P., & Keshmiri, A. (2024). Investigation of mixing miscible liquids with high viscosity contrasts in turbulently stirred vessels using electrical resistance tomography. Chemical Engineering Journal, 486. https://doi.org/10.1016/j.cej.2024.149712

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 2

67%

Researcher 1

33%

Readers' Discipline

Tooltip

Chemical Engineering 3

60%

Energy 1

20%

Engineering 1

20%

Save time finding and organizing research with Mendeley

Sign up for free