Seeking for an appropriate design of wind farm (WF) layout constitutes a complex task in a wind energy project. An optimization approach is seriously needed to deal with this complexity, especially with current trend of large WFs area with important number of wind turbines (WTs). The present paper investigates optimization study of realistic offshore WF design layout (horns-rev1). The main objective of the current study is to design WF area that maximizes the extraction of wind power with low cost. In the first step, an optimization model using genetic algorithm with continuous layout representation is developed to look for the optimal design as a function of WTs placement. The effectiveness of such a methodology is validated and compared with the reference and irregular layout of hors-rev1 offshore WF. With the aim to analyze the impact of WTs types on WF objectives, four commercial WTs are considered in the second step. The results showed that designing WF with big WTs gives best design layout. In addition, it demonstrated that selecting WTs based uniquely on rotor diameter size is not always a good idea. It should includes as well the number of WTs that influence significantly the power production and WF cost.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Charhouni, N., Sallaou, M., & Mansouri, K. (2019). Realistic wind farm design layout optimization with different wind turbines types. International Journal of Energy and Environmental Engineering, 10(3), 307–318. https://doi.org/10.1007/s40095-019-0303-2