To mitigate the impact forces in crash events, thin-walled tubular elements are employed as an energy absorbing attenuators in frontal part of the automotive vehicles. To develop more progressive deformation modes, at the initial period, and to absorb more impact energy at the final period of crash, it is significant to enhance the crashworthiness performance of the tube by modifying its geometrical parameters. Multi-cell tubular structures have recognized to own superior impact energy absorbing ability and lightweight effect in the modern automotive vehicles. This research article examines the deformation behaviour of thin walled aluminum alloy multi-cell tube with different stiffeners exposed to axial impact loading using numerical simulation. Nonlinear impact simulations were performed on multi-cell tubes using finite element ABAQUS/CAE explicit code. From the overall results obtained, the deformation behaviour of multi-cell tubes was compared. Furthermore, hexagonal tubes with stiffeners were retained as most prominent for better energy dissipation. This type of tube was found to be most efficient type to enhance the crashworthiness performance during axial impact.
CITATION STYLE
kumar*, A. P., Sankar, L. P., … Raju, B. (2019). Crashworthiness Characteristics of Multi-Cell Tubular Structures Subjected To Axial Impact. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 3911–3915. https://doi.org/10.35940/ijrte.d8325.118419
Mendeley helps you to discover research relevant for your work.