Carbon acquisition of bloom-forming marine phytoplankton

386Citations
Citations of this article
359Readers
Mendeley users who have this article in their library.

Abstract

Carbon acquisition in relation to CO2 supply was investigated in three marine bloom-forming microalgae, the diatom Skeletonema costatum, the flagellate Phaeocystis globosa, and the coccolithophorid Emiliania huxleyi. In vivo activities of extracellular (eCA) and intracellular (iCA) carbonic anhydrase activity, photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry in cells acclimated to pCO2 levels of 36, 180, 360, and 1,800 ppmv. Large differences were obtained between species both with regard to the efficiency and regulation of carbon acquisition. While eCA activity increased with decreasing CO2 concentration in S. costatum and P. globosa, consistently low values were obtained for E. huxleyi. No clear trends with pCO2 were observed in iCA activity for any of the species tested. Half saturation concentrations (K1/2) for photosynthetic O2 evolution, which were highest for E. huxleyi and lowest for S. costatum, generally decreased with decreasing CO2 concentration. In contrast, K1/2 values for P. globosa remained unaffected by pCO2 of the incubation. CO2 and HCO3- were taken up simultaneously by all species. The relative contribution of HCO3- to total carbon uptake generally increased with decreasing CO2, yet strongly differed between species. Whereas K1/2 for CO2 and HCO3- uptake was lowest at the lowest pCO2 for S. costatum and E. huxleyi, it did not change as a function of pCO2 in P. globosa. The observed taxon-specific differences in CO2 sensitivity, if representative for the natural environment, suggest that changes in CO2 availability may influence phytoplankton species succession and distribution. By modifying the relative contribution of different functional groups, e.g., diatomaceous versus calcareous phytoplankton, to the overall primary production this could potentially affect marine biogeochemical cycling and air-sea gas exchange.

References Powered by Scopus

Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran.

6761Citations
N/AReaders
Get full text

Biogeochemical controls and feedbacks on ocean primary production

2131Citations
N/AReaders
Get full text

Reduced calcification of marine plankton in response to increased atmospheric CO<inf>2</inf>

1156Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Ocean acidification: The other CO<inf>2</inf> problem

3235Citations
N/AReaders
Get full text

CO<inf>2</inf> concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution

1232Citations
N/AReaders
Get full text

Atmospheric science: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene

748Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Rost, B., Riebesell, U., Burkhardt, S., & Sültemeyer, D. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48(1 I), 55–67. https://doi.org/10.4319/lo.2003.48.1.0055

Readers over time

‘09‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24015304560

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 151

54%

Researcher 101

36%

Professor / Associate Prof. 20

7%

Lecturer / Post doc 7

3%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 143

50%

Earth and Planetary Sciences 71

25%

Environmental Science 67

23%

Chemical Engineering 6

2%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0