An AI-Based Algorithm for the Automatic Classification of Thoracic Radiographs in Cats

16Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

An artificial intelligence (AI)-based computer-aided detection (CAD) algorithm to detect some of the most common radiographic findings in the feline thorax was developed and tested. The database used for training comprised radiographs acquired at two different institutions. Only correctly exposed and positioned radiographs were included in the database used for training. The presence of several radiographic findings was recorded. Consequenly, the radiographic findings included for training were: no findings, bronchial pattern, pleural effusion, mass, alveolar pattern, pneumothorax, cardiomegaly. Multi-label convolutional neural networks (CNNs) were used to develop the CAD algorithm, and the performance of two different CNN architectures, ResNet 50 and Inception V3, was compared. Both architectures had an area under the receiver operating characteristic curve (AUC) above 0.9 for alveolar pattern, bronchial pattern and pleural effusion, an AUC above 0.8 for no findings and pneumothorax, and an AUC above 0.7 for cardiomegaly. The AUC for mass was low (above 0.5) for both architectures. No significant differences were evident in the diagnostic accuracy of either architecture.

Cite

CITATION STYLE

APA

Banzato, T., Wodzinski, M., Tauceri, F., Donà, C., Scavazza, F., Müller, H., & Zotti, A. (2021). An AI-Based Algorithm for the Automatic Classification of Thoracic Radiographs in Cats. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.731936

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free