On the exploitation of one class classification to distinguish food Vs non-food images

17Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the last years automatic food image understanding has become an important research challenge for the society. This is because of the serious impact that food intake has in human life. Food recognition engines, can help the monitoring of the patient diet and his food intake habits. Nevertheless, distinguish among different classes of food is not the first question for assisted dietary monitoring systems. Prior to ask what class of food is depicted in an image, a computer vision system should be able to distinguish between food vs non-food images. In this work we consider one-class classification method to distinguish food vs non-food images. The UNICT-FD889 dataset is used for training purpose, whereas other two datasets of food and non-food images has been downloaded from Flickr to test the method. Taking into account previous works, we used Bag-of-Words representation considering different feature spaces to build the codebook. To give possibility to the community to work on the considered problem, the datasets used in our experiments are made publicly available.

References Powered by Scopus

Deep learning

64132Citations
N/AReaders
Get full text

Distinctive image features from scale-invariant keypoints

50096Citations
N/AReaders
Get full text

Estimating the support of a high-dimensional distribution

4544Citations
N/AReaders
Get full text

Cited by Powered by Scopus

A survey on food computing

249Citations
N/AReaders
Get full text

Food-pics_extended-an image database for experimental research on eating and appetite: Additional images, normative ratings and an updated review

147Citations
N/AReaders
Get full text

Retrieval and classification of food images

95Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Farinella, G. M., Allegra, D., Stanco, F., & Battiato, S. (2015). On the exploitation of one class classification to distinguish food Vs non-food images. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9281, pp. 375–383). Springer Verlag. https://doi.org/10.1007/978-3-319-23222-5_46

Readers over time

‘15‘16‘17‘19‘20‘21‘22‘23‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 13

87%

Professor / Associate Prof. 1

7%

Researcher 1

7%

Readers' Discipline

Tooltip

Computer Science 13

68%

Engineering 4

21%

Philosophy 1

5%

Nursing and Health Professions 1

5%

Save time finding and organizing research with Mendeley

Sign up for free
0