Approximating the Value of Zero-Sum Differential Games with Linear Payoffs and Dynamics

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We consider two-player zero-sum differential games of fixed duration, where the running payoff and the dynamics are both linear in the controls of the players. Such games have a value, which is determined by the unique viscosity solution of a Hamilton–Jacobi-type partial differential equation. Approximation schemes for computing the viscosity solution of Hamilton–Jacobi-type partial differential equations have been proposed that are valid in a more general setting, and such schemes can of course be applied to the problem at hand. However, such approximation schemes have a heavy computational burden. We introduce a discretized and probabilistic version of the differential game, which is straightforward to solve by backward induction, and prove that the solution of the discrete game converges to the viscosity solution of the partial differential equation, as the discretization becomes finer. The method removes part of the computational burden of existing approximation schemes.

Cite

CITATION STYLE

APA

Kuipers, J., Schoenmakers, G., & Staňková, K. (2023). Approximating the Value of Zero-Sum Differential Games with Linear Payoffs and Dynamics. Journal of Optimization Theory and Applications, 198(1), 332–346. https://doi.org/10.1007/s10957-023-02236-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free