Effect of pore size heterogeneity on hydrocarbon fluid distribution, transport, and primary and secondary recovery in nano-porous media

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we investigate the effect of pore size heterogeneity on fluid composition distribution of multicomponent-multiphase hydrocarbons and its subsequent influence on mass transfer in shale nanopores. The change of multi-contact minimum miscibility pressure (MMP) in heterogeneous nanopores was investigated. We used a compositional simulation model with a modified flash calculation, which considers the effect of large gas-oil capillary pressure on phase behavior. Different average pore sizes for different segments of the computational domain were considered and the effect of the resulting heterogeneity on phase change, composition distributions, and production was investigated. A two-dimensional formulation was considered here for the application of matrix-fracture cross-mass transfer and the rock matrix can also consist of different segments with different average pore sizes. Both convection and molecular diffusion terms were included in the mass balance equations, and different reservoir fluids such as ternary mixture syntactic oil, Bakken oil, and Marcellus shale condensate were considered. The simulation results indicate that oil and gas phase compositions vary in different pore sizes, resulting in a concentration gradient between the two adjacent pores of different sizes. Given that shale permeability is extremely small, we expect the mass transfer between the two sections of the reservoir/core with two distinct average pore sizes to be diffiusion-dominated. This observation implies that there can be a selective matrix-fracture component mass transfer as a result of confinement-dependent phase behavior. Therefore, the molecular diffiusion term should be always included in the mass transfer equations, for both primary and gas injection enhanced oil recovery (EOR) simulation of heterogeneous shale reservoirs.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Zhang, K., Du, F., & Nojabaei, B. (2020). Effect of pore size heterogeneity on hydrocarbon fluid distribution, transport, and primary and secondary recovery in nano-porous media. Energies, 13(7). https://doi.org/10.3390/en13071680

Readers over time

‘20‘21‘22‘2401234

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

100%

Readers' Discipline

Tooltip

Chemical Engineering 1

25%

Materials Science 1

25%

Energy 1

25%

Engineering 1

25%

Save time finding and organizing research with Mendeley

Sign up for free
0