Feynman Integrals, Toric Geometry and Mirror Symmetry

  • Vanhove P
N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This expository text is about using toric geometry and mirror symmetry for evaluating Feynman integrals. We show that the maximal cut of a Feynman integral is a GKZ hypergeometric series. We explain how this allows to determine the minimal differential operator acting on the Feynman integrals. We illustrate the method on sunset integrals in two dimensions at various loop orders. The graph polynomials of the multi-loop sunset Feynman graphs lead to reflexive polytopes containing the origin and the associated variety are ambient spaces for Calabi-Yau hypersurfaces. Therefore the sunset family is a natural home for mirror symmetry techniques. We review the evaluation of the two-loop sunset integral as an elliptic dilogarithm and as a trilogarithm. The equivalence between these two expressions is a consequence of 1) the local mirror symmetry for the non-compact Calabi-Yau three-fold obtained as the anti-canonical hypersurface of the del Pezzo surface of degree 6 defined by the sunset graph polynomial and 2) that the sunset Feynman integral is expressed in terms of the local Gromov-Witten prepotential of this del Pezzo surface.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Vanhove, P. (2019). Feynman Integrals, Toric Geometry and Mirror Symmetry (pp. 415–458). https://doi.org/10.1007/978-3-030-04480-0_17

Readers over time

‘18‘19‘20‘21‘22‘23‘2400.751.52.253

Readers' Seniority

Tooltip

Researcher 2

50%

Professor / Associate Prof. 1

25%

PhD / Post grad / Masters / Doc 1

25%

Readers' Discipline

Tooltip

Physics and Astronomy 3

50%

Mathematics 2

33%

Linguistics 1

17%

Save time finding and organizing research with Mendeley

Sign up for free
0