Abstract
Biomaterials represent a potential means for the construction industry to reduce its negative ecological impact. These materials require substantially different approaches from conventional construction materials to maximise their potential. In this paper we have outlined four principles of biological design that we argue are central for the successful implementation of a new construction paradigm through biodesign. These principles are: Diversity , complexity and specificity (of form), durability through resilience , and feedback and adaptation . Diversity of material is necessary to maintain the sustainability of biomaterials when scaled up to construction industry volumes. Complexity and specificity of form enable high performativity of the built environments when using low-impact materials. Durability through resilience allows designers to work with materials that would otherwise be considered too weak. Finally, feedback and adaptation are core principles of biological design that allow plants and animals to constantly evolve in response to changing conditions, across multiple time scales, and to manage design in complex systems. In conclusion we have argued that many of these principles are found in vernacular architectural traditions, but that emerging design and fabrication technologies can enable broader implementation that can combine the benefits of modern and vernacular buildings practice.
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
Cite
CITATION STYLE
Andréen, D., & Goidea, A. (2022). Principles of biological design as a model for biodesign and biofabrication in architecture. Architecture, Structures and Construction, 2(4), 481–491. https://doi.org/10.1007/s44150-022-00049-6