Reachability in higher-order-counters

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Higher-order counter automata (HOCS) can be either seen as a restriction of higher-order pushdown automata (HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level k HOCS with 0-test is complete for (k - 2)-fold exponential space; leaving out the 0-test leads to completeness for (k - 2)-fold exponential time. Restricting HOCS (without 0-test) to level 2, we prove that global (forward or backward) reachability analysis is P-complete. This enhances the known result for pushdown systems which are subsumed by level 2 HOCS without 0-test. We transfer our results to the formal language setting. Assuming that P subset of with not equal to PSPACE subset of with not equal to EXPTIME, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of HOPS and of HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi. © 2013 Springer-Verlag.

Cite

CITATION STYLE

APA

Heußner, A., & Kartzow, A. (2013). Reachability in higher-order-counters. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8087 LNCS, pp. 528–539). https://doi.org/10.1007/978-3-642-40313-2_47

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free