Water, energy and environment nexus: Quantitative assessment for integrated power plants with renewable energy

7Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The population increase and the demand for water and energy, accompanied by the implications of environment pollution for natural and human resources, indicate the critical necessity for a coherent movement towards nexus between water, energy, and environment. Due to the fact that power generation industry is responsible for a significant proportion of water and fuel consumption and Carbon dioxide emissions within the world, in this research, the application of the hybrid renewable system in a thermal power plant has been assessed based on the approach of analyzing the link between energy, water and environment. The design of the solar system and the assessment of carbon balance during the power plant lifetime have been conducted in PVsyst application in 2022. Moreover, ReCipe environmental model has been used for assessing the effect of decrease in carbon emission on the ecosystem. The findings of the research indicate that the replacement of at least 2 % of the nominal capacity of the fossil fuel power plant with the renewable one, prevents the emission of 1431.28 tons of carbon dioxide yearly. This amount equals to 380.34 cubic meters of reserve in fossil fuel consumption and 391.73 tons of crude oil. The results also showed that in addition to preserving natural resources, the hybrid cycle design leads to significant water demand reduction which equals to 3842 cubic meters with the capacity to supply underground water sources. Due to the interests of preserving water and energy resources and decreasing carbon emission in power plant industry, within the framework of nexus approach, management of energy supply by replacing resources and using water and heat recovery technologies and application of energy demand management policies based on energy efficiency and environmental implications is recommended.

Figures

References Powered by Scopus

An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis

290Citations
N/AReaders
Get full text

A review on microgrid decentralized energy/voltage control structures and methods

247Citations
N/AReaders
Get full text

A Distributed Economic Dispatch Strategy for Power-Water Networks

229Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Sustainable dynamic planning and policy implementation for water, energy and food resources

7Citations
N/AReaders
Get full text

Assessing urban development indicators for environmental sustainability

4Citations
N/AReaders
Get full text

Heating, cooling and energy management of cold climate educational built environments using green roofs

2Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Zahedi, R., Yousefi, H., Aslani, A., & Ahmadi, R. (2024). Water, energy and environment nexus: Quantitative assessment for integrated power plants with renewable energy. Energy Strategy Reviews, 53. https://doi.org/10.1016/j.esr.2024.101410

Readers over time

‘24‘25036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

60%

Professor / Associate Prof. 1

20%

Researcher 1

20%

Readers' Discipline

Tooltip

Engineering 3

43%

Decision Sciences 2

29%

Energy 1

14%

Arts and Humanities 1

14%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0