Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways

6Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Okubo, Y., Ohtake, F., Igarashi, K., Yasuhiko, Y., Hirabayashi, Y., Saga, Y., & Kanno, J. (2021). Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways. Development (Cambridge, England), 148(19). https://doi.org/10.1242/dev.193664

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

67%

Researcher 2

22%

Professor / Associate Prof. 1

11%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 4

44%

Neuroscience 2

22%

Agricultural and Biological Sciences 2

22%

Engineering 1

11%

Save time finding and organizing research with Mendeley

Sign up for free