Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

34Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Further research is needed to reduce the existing uncertainties on the effect that specific aerosol particle sources have on light extinction and consequently on climate. This study presents a new approach that aims to quantify the mass scattering and absorption efficiencies (MSEs and MAEs) of different aerosol sources at urban (Barcelona - BCN), regional (Montseny - MSY) and remote (Montsec - MSA) background sites in the north-western (NW) Mediterranean. An analysis of source apportionment to the measured multi-wavelength light scattering (σsp) and absorption (σap) coefficients was performed by means of a multilinear regression (MLR) model for the periods 2009-2014, 2010-2014 and 2011-2014 at BCN, MSY and MSA respectively. The source contributions to PM10 mass concentration, identified by means of the positive matrix factorization (PMF) model, were used as dependent variables in the MLR model. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction through the determination of their MSEs and MAEs. An advantage of the presented approach is that the calculated MSEs and MAEs take into account the internal mixing of atmospheric particles. Seven aerosol sources were identified at MSA and MSY, and eight sources at BCN. Mineral, aged marine, secondary sulfate, secondary nitrate and V-Ni bearing sources were common at the three sites. Traffic, industrial/metallurgy and road dust resuspension sources were isolated at BCN, whereas mixed industrial/traffic and aged organics sources were identified at MSY and MSA. The highest MSEs were observed for secondary sulfate (4.5 and 10.7 m2 g-1, at MSY and MSA), secondary nitrate (8.8 and 7.8 m2 g-1) and V-Ni bearing source (8 and 3.5 m2 g-1). These sources dominated the scattering throughout the year with marked seasonal trends. The V-Ni bearing source, originating mainly from shipping in the area under study, simultaneously contributed to both σsp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).

References Powered by Scopus

Estimates of the Regression Coefficient Based on Kendall's Tau

9861Citations
N/AReaders
Get full text

Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change

9283Citations
N/AReaders
Get full text

Bounding the role of black carbon in the climate system: A scientific assessment

4689Citations
N/AReaders
Get full text

Cited by Powered by Scopus

COVID-19's impact on the atmospheric environment in the Southeast Asia region

256Citations
N/AReaders
Get full text

African dust and air quality over Spain: Is it only dust that matters?

74Citations
N/AReaders
Get full text

Multidecadal trend analysis of in situ aerosol radiative properties around the world

59Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ealo, M., Alastuey, A., Pérez, N., Ripoll, A., Querol, X., & Pandolfi, M. (2018). Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean. Atmospheric Chemistry and Physics, 18(2), 1149–1169. https://doi.org/10.5194/acp-18-1149-2018

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 19

59%

Researcher 10

31%

Professor / Associate Prof. 3

9%

Readers' Discipline

Tooltip

Environmental Science 14

56%

Earth and Planetary Sciences 7

28%

Chemistry 2

8%

Engineering 2

8%

Save time finding and organizing research with Mendeley

Sign up for free