This study pools published data to describe the increase in glomerular filtration rate (GFR) from very premature neonates to young adults. The data comprises measured GFR (using polyfructose, 51Cr-EDTA, mannitol or iohexol) from eight studies (n=923) and involved very premature neonates (22 weeks postmenstrual age) to adulthood (31 years). A nonlinear mixed effects approach (NONMEM) was used to examine the influences of size and maturation on renal function. Size was the primary covariate, and GFR was standardized for a body weight of 70 kg using an allometric power model. Postmenstrual age (PMA) was a better descriptor of maturational changes than postnatal age (PNA). A sigmoid hyperbolic model described the nonlinear relationship between GFR maturation and PMA. Assuming an allometric coefficient of 3/4, the fully mature (adult) GFR is predicted to be 121.2 mL/min per 70 kg [95% confidence interval (CI) 117-125]. Half of the adult value is reached at 47.7 post-menstrual weeks (95%CI 45.1-50.5), with a Hill coefficient of 3.40 (95%CI 3.03-3.80). At 1-year postnatal age, the GFR is predicted to be 90% of the adult GFR. Glomerular filtration rate can be predicted with a consistent relationship from early prematurity to adulthood. We propose that this offers a clinically useful definition of renal function in children and young adults that is independent of the predictable changes associated with age and size. © IPNA 2008.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Rhodin, M. M., Anderson, B. J., Peters, A. M., Coulthard, M. G., Wilkins, B., Cole, M., … Holford, N. H. G. (2009). Human renal function maturation: A quantitative description using weight and postmenstrual age. Pediatric Nephrology, 24(1), 67–76. https://doi.org/10.1007/s00467-008-0997-5