A meshless solution for potential equations using a continuous-valued circular line source

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We find solutions to Δ2U = 0 in a simply-connected 2-D domain D, using a continuous line source associated with a concentration function comprising n undetermined parameters. This choice reduces ill-conditioning effects by reducing the number of parameters involved. The choice of a continuous circular line source C around D follows from previous results indicating that, when solving the same problem with discrete point sources, the result is independent of precise placement of sources. The circle is associated with a concentration function that is constrained to satisfy the problem's boundary conditions. Accuracy is achievable using a number of parameters which, had discrete sources been used, would be insufficient to represent the geometry of D, thus giving inaccurate results. Empirical investigations with various forms of concentration function show that with some domains, the error in calculated values of U can be less than 0.1%: an order of magnitude improvement over discrete methods. More complex domains yield less accuracy, and, after testing on a range of domains, we formulate an empirical rule for an appropriate form for the concentration function for a generic domain. Code requiring high-precision arithmetic was developed in Mathematica, which also simplifies routine tasks of solving linear systems and integrations.

References Powered by Scopus

Methods of fundamental solutions for harmonic and biharmonic boundary value problems

88Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Isogeometric indirect BEM solution based on virtual continuous sources placed directly on the boundary of 2D Helmholtz acoustic problems

10Citations
N/AReaders
Get full text

3D isogeometric indirect BEM solution based on virtual surface sources on the boundaries of Helmholtz acoustic problems

3Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Mitic, P., & Rashed, Y. F. (2007). A meshless solution for potential equations using a continuous-valued circular line source. In WIT Transactions on Modelling and Simulation (Vol. 44, pp. 33–42). https://doi.org/10.2495/BE070041

Readers over time

‘13‘16‘17‘1900.511.52

Readers' Seniority

Tooltip

Professor / Associate Prof. 2

50%

PhD / Post grad / Masters / Doc 2

50%

Readers' Discipline

Tooltip

Physics and Astronomy 1

33%

Engineering 1

33%

Earth and Planetary Sciences 1

33%

Save time finding and organizing research with Mendeley

Sign up for free
0