Screening and Identification of a Novel Anti-tuberculosis Compound That Targets Deoxyuridine 5′-Triphosphate Nucleotidohydrolase

2Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Tuberculosis (TB) is still a threat to humans worldwide. The rise of drug-resistant TB strains has escalated the need for developing effective anti-TB agents. Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) is essential for thymidylate biosynthesis to maintain the DNA integrity. In Mycobacterium tuberculosis, dUTPase provides the sole source for thymidylate biosynthesis, which also has the specific five-residue loop and the binding pockets absent in human dUTPase. Therefore, dUTPase has been regarded as a promising anti-TB drug target. Herein, we used a luminescence-based dUTPase assay to search for the inhibitors target M. tuberculosis dUTPase (Mt-dUTPase) and identified compound F0414 as a potent Mt-dUTPase inhibitor with an IC50 of 0.80 ± 0.09 μM. F0414 exhibited anti-TB activity with low cytotoxicity. Molecular docking model and site-directed mutation experiments revealed that P79 was the key residue in the interaction of Mt-dUTPase and F0414. Moreover, F0414 was shown to have stronger binding with Mt-dUTPase than with Mt-P79A-dUTPase by surface plasmon resonance (SPR) detection. Interestingly, F0414 exhibited insensitivity and weak directly binding on human dUTPase compared with that on Mt-dUTPase. All the results highlight that F0414 is the first compound reported to have anti-TB activity by inhibiting Mt-dUTPase, which indicates the potential application in anti-TB therapy.

Cite

CITATION STYLE

APA

Zhang, Y., Zhang, H., Chen, Y., Qiao, L., Han, Y., Lin, Y., … Jiang, J. D. (2021). Screening and Identification of a Novel Anti-tuberculosis Compound That Targets Deoxyuridine 5′-Triphosphate Nucleotidohydrolase. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.757914

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free