Floral Scents in Bee-Pollinated Buckwheat and Oilseed Rape under a Global Warming Scenario

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Many wild plants and crops are pollinated by insects, which often use floral scents to locate their host plants. The production and emission of floral scents are temperature-dependent; however, little is known about how global warming affects scent emissions and the attraction of pollinators. We used a combination of chemical analytical and electrophysiological approaches to quantify the influence of a global warming scenario (+5 °C in this century) on the floral scent emissions of two important crop species, i.e., buckwheat (Fagopyrum esculentum) and oilseed rape (Brassica napus), and to test whether compounds that are potentially different between the treatments can be detected by their bee pollinators (Apis mellifera and Bombus terrestris). We found that only buckwheat was affected by increased temperatures. Independent of temperature, the scent of oilseed rape was dominated by p-anisaldehyde and linalool, with no differences in relative scent composition and the total amount of scent. Buckwheat emitted 2.4 ng of scent per flower and hour at optimal temperatures, dominated by 2- and 3-methylbutanoic acid (46%) and linalool (10%), and at warmer temperatures threefold less scent (0.7 ng/flower/hour), with increased contributions of 2- and 3-methylbutanoic acid (73%) to the total scent and linalool and other compounds being absent. The antennae of the pollinators responded to various buckwheat floral scent compounds, among them compounds that disappeared at increased temperatures or were affected in their (relative) amounts. Our results highlight that increased temperatures differentially affect floral scent emissions of crop plants and that, in buckwheat, the temperature-induced changes in floral scent emissions affect the olfactory perception of the flowers by bees. Future studies should test whether these differences in olfactory perception translate into different attractiveness of buckwheat flowers to bees.

References Powered by Scopus

Importance of pollinators in changing landscapes for world crops

4877Citations
N/AReaders
Get full text

Global pollinator declines: Trends, impacts and drivers

4525Citations
N/AReaders
Get full text

Safeguarding pollinators and their values to human well-being

1298Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Global warming impairs the olfactory floral signaling in strawberry

10Citations
N/AReaders
Get full text

Phytochemical profiling of red raspberry (Rubus idaeus L.) honey and investigation of compounds related to its pollen occurrence

5Citations
N/AReaders
Get full text

Sustaining floriculture and floral fragrance in a changing climate

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Cordeiro, G. D., & Dötterl, S. (2023). Floral Scents in Bee-Pollinated Buckwheat and Oilseed Rape under a Global Warming Scenario. Insects, 14(3). https://doi.org/10.3390/insects14030242

Readers over time

‘23‘24036912

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

57%

Lecturer / Post doc 2

29%

Researcher 1

14%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 4

57%

Neuroscience 2

29%

Earth and Planetary Sciences 1

14%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1
News Mentions: 1
Social Media
Shares, Likes & Comments: 43

Save time finding and organizing research with Mendeley

Sign up for free
0