Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Predictions of future mass loss from ice sheets are afflicted with uncertainty, caused, among others, by insufficient understanding of spatiotemporally variable processes at the inaccessible base of ice sheets for which few direct observations exist and of which basal friction is a prime example. Here, we present a general numerical framework for studying the relationship between bed and surface properties of ice sheets and glaciers. Specifically, we use an inverse modeling approach and the associated time-dependent adjoint equations, derived in the framework of a full Stokes model and a shallow-shelf/shelfy-stream approximation model, respectively, to determine the sensitivity of grounded ice sheet surface velocities and elevation to time-dependent perturbations in basal friction and basal topography. Analytical and numerical examples are presented showing the importance of including the time-dependent kinematic free surface equation for the elevation and its adjoint, in particular for observations of the elevation. A closed form of the analytical solutions to the adjoint equations is given for a two-dimensional vertical ice in steady state under the shallow-shelf approximation. There is a delay in time between a seasonal perturbation at the ice base and the observation of the change in elevation. A perturbation at the base in the topography has a direct effect in space at the surface above the perturbation, and a perturbation in the friction is propagated directly to the surface in time.

References Powered by Scopus

The representative concentration pathways: An overview

5979Citations
N/AReaders
Get full text

Trajectories of the Earth System in the Anthropocene

1939Citations
N/AReaders
Get full text

Ice sheet grounding line dynamics: Steady states, stability, and hysteresis

887Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Simulating surface height and terminus position for marine outlet glaciers using a level set method with data assimilation

3Citations
N/AReaders
Get full text

Multifidelity uncertainty quantification for ice sheet simulations

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Cheng, G., Kirchner, N., & Lötstedt, P. (2021). Sensitivity of ice sheet surface velocity and elevation to variations in basal friction and topography in the full Stokes and shallow-shelf approximation frameworks using adjoint equations. Cryosphere, 15(2), 715–742. https://doi.org/10.5194/tc-15-715-2021

Readers over time

‘20‘21‘22‘2302468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

71%

Professor / Associate Prof. 1

14%

Researcher 1

14%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 5

71%

Environmental Science 2

29%

Save time finding and organizing research with Mendeley

Sign up for free
0