Compared to applications that trigger massive information streams, like earthquakes and human disease epidemics, the data input for agricultural and environmental biosecurity events (ie. the introduction of unwanted exotic pests and pathogens), is expected to be sparse and less frequent. To investigate if Twitter data can be useful for the detection and monitoring of biosecurity events, we adopted a three-step process. First, we confirmed that sightings of two migratory species, the Bogong moth (Agrotis infusa) and the Common Koel (Eudynamys scolopaceus) are reported on Twitter. Second, we developed search queries to extract the relevant tweets for these species. The queries were based on either the taxonomic name, common name or keywords that are frequently used to describe the species (symptomatic or syndromic). Third, we validated the results using ground truth data. Our results indicate that the common name queries provided a reasonable number of tweets that were related to the ground truth data. The taxonomic query resulted in too small datasets, while the symptomatic queries resulted in large datasets, but with highly variable signal-to-noise ratios. No clear relationship was observed between the tweets from the symptomatic queries and the ground truth data. Comparing the results for the two species showed that the level of familiarity with the species plays a major role. The more familiar the species, the more stable and reliable the Twitter data. This clearly presents a problem for using social media to detect the arrival of an exotic organism of biosecurity concern for which public is unfamiliar.
CITATION STYLE
Welvaert, M., Al-Ghattas, O., Cameron, M., & Caley, P. (2017). Limits of use of social media for monitoring biosecurity events. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0172457
Mendeley helps you to discover research relevant for your work.