Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration

36Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Post-translational nitration of tyrosine is considered to be an important step in controlling the multiple functions of cytochrome c (Cyt-c). However, the underlying structural basis and mechanism are not yet understood. In this work, human Cyt-c variants in which all but one tyrosine has been substituted by phenylalanine have been studied by resonance Raman and electrochemical methods to probe the consequences of tyrosine nitration on the heme pocket structure and the redox potential. The mutagenic modifications of the protein cause only subtle conformational changes of the protein and small negative shifts of the redox potentials which can be rationalized in terms of long-range electrostatic effects on the heme. The data indicate that the contributions of the individual tyrosines for maintaining the relatively high redox potential of Cyt-c are additive. Nitration of individual tyrosines leads to a destabilization of the axial Fe-Met80 bond which causes the substitution of the native Met ligand by a water molecule or a lysine residue for a fraction of the proteins. Electrostatic immobilization of the protein variants on electrodes coated by self-assembled monolayers (SAMs) of mercaptounadecanoic acid destabilizes the heme pocket structure of both the nitrated and non-nitrated variants. Here, the involvement of surface lysines in binding to the SAM surface prevents the replacement of the Met80 ligand by a lysine but instead a His-His coordinated species is formed. The results indicate that structural perturbations of the heme pocket of Cyt-c due to tyrosine nitration and to local electric fields are independent of each other and occur via different molecular mechanisms. The present results are consistent with the view that either tyrosine nitration or electrostatic binding to the inner mitochondrial membrane, or both events together, are responsible for the switch from the redox to the peroxidase function. © 2012 American Chemical Society.

References Powered by Scopus

VMD: Visual molecular dynamics

51173Citations
N/AReaders
Get full text

Nitric oxide, oxidants, and protein tyrosine nitration

1314Citations
N/AReaders
Get full text

Cytochrome C Acts As A Cardiolipin Oxygenase Required for Release of Proapoptotic Factors

1092Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects

423Citations
N/AReaders
Get full text

Multifunctional Cytochrome c: Learning New Tricks from an Old Dog

209Citations
N/AReaders
Get full text

Solar-driven reduction of aqueous CO <inf>2</inf> with a cobalt bis(terpyridine)-based photocathode

166Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ly, H. K., Utesch, T., Díaz-Moreno, I., García-Heredia, J. M., De La Rosa, M. Á., & Hildebrandt, P. (2012). Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration. Journal of Physical Chemistry B, 116(19), 5694–5702. https://doi.org/10.1021/jp302301m

Readers over time

‘12‘13‘14‘15‘16‘17‘18‘19‘20‘22‘23‘2402468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 15

63%

Researcher 6

25%

Professor / Associate Prof. 3

13%

Readers' Discipline

Tooltip

Chemistry 12

55%

Agricultural and Biological Sciences 6

27%

Biochemistry, Genetics and Molecular Bi... 3

14%

Sports and Recreations 1

5%

Save time finding and organizing research with Mendeley

Sign up for free
0