Outer rise seismicity related to the Maule, Chile 2010 mega-thrust earthquake and hydration of the incoming oceanic lithosphere

  • Moscoso E
  • Contreras-Reyes E
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8) show a pronounced slip maximum of 15-20 m offshore Iloca (~35°S), indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m appears south of the epicenter west of the Arauco Peninsula. During the first weeks following the main shock and seaward of the main slip maximum, an outer rise seismic cluster of >450 events, mainly extensional, with magnitudes Mw=4-6 was formed. In contrast, the outer rise located seaward of the secondary slip maximum presents little seismicity. This observation suggests that outer rise seismicity following the Maule earthquake is strongly correlated with the heterogeneous coseismic slip distribution of the main megathrust event. In particular, the formation of the outer-rise seismic cluster in the north, which spatially correlates with the main maximum slip, is likely linked to strong extensional stresses transfered from the large slip of the subducting oceanic plate. In addition, high resolution bathymetric data reveals that bending-related faulting is more intense seaward of the main maximum slip, where well developed extensional faults strike parallel to the trench axis. Also published seismic constraints reveal reduced P-wave velocities in the uppermost mantle at the trench-outer rise region (7.5-7.8 km/s), which suggest serpentinization of the uppermost mantle. Seawater percolation up to mantle depths is likely driven by bending related-faulting at the outer rise. Water percolation into the upper mantle is expected to be more efficient during the co-seismic and early post-seismic periods of large megathrust earthquakes when intense extensional faulting of the oceanic lithosphere facilitates water infiltration seaward of the trench.

Figures

  • FIG. 1. Conceptual model of the relationship between coupled/ uncoupled subduction zones and outer rise earthquake mechanisms in central Chile, based in the model given by Moscoso et al. (2011) and in the idealized mechanism proposed by Christensen and Ruff (1988). Compresional outer rise earthquakes are represented by black circles, extensional events are drawn as white circles and the black arrows show the orientations of the main stress axes. After Christensen and Ruff (1988).
  • FIG. 2. (A) and (B) show the Bathymetric/Topographic map of central Chile. The green dots in (A) correspond to the seismicity reported by NEIC catalog with magnitude higher than 4 from 1/1/2008 until the day before hit the Maule earthquake on 27/2/2010. In figure (B), the yellow dots stand for the aftershocks reported by NEIC catalog up to three months after the main shock of the Maule earthquake. We also show the CMT focal mechanisms of the most significant outer rise earthquakes prior to the 2010 earthquake in (A) and of the aftershocks with Mw>5.0 reported by CMT catalog during the year following the Maule earthquake. For comparison, we show the coseismic slip models, after (C) Lorito et al. (2011) and (D) Lay et al. (2010), and its correlation with the trench outer rise seismic activity after the earthquake presented in (B). From figures (C) and (D) it is evident the change of outer rise earthquake type to pure tensional regime after the Maule earthquake. The arrow of figures (C) and (D) indicates the convergence velocity between the Nazca and South American plates (Angermann et al., 1999). The red dots denote the aftershocks reported by NEIC catalog up to three months after the main shock of the Maule earthquake.
  • FIG. 3. (A) High-resolution bathymetric image of the seafloor offshore central Chile (Flueh and Bialas, 2008; Ranero et al., 2005; Voelker et al., 2009; Moscoso et al., 2011). Note the SE-NW trending topographic pattern of the tectonic fabric formed at the East Pacific spreading center, which is overprinted by bending related faults. Slip contour lines are based on the coseismic slip model of Lorito et al. (2011), shown in figure 2C. Bending related faults trend roughly parallel to the trench axis, where faulting appears to be more intense in the north (B) than in the south (C) of the epicenter of the Maule earthquake.
  • FIG. 4. Seismic velocity model of P03 after Moscoso et al. (2011). Relative low mantle and crustal velocities in the trench outer rise region, suggesting intense bending related fracturing and seawater infiltration into the oceanic lithosphere.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Moscoso, E. I., & Contreras-Reyes, E. (2012). Outer rise seismicity related to the Maule, Chile 2010 mega-thrust earthquake and hydration of the incoming oceanic lithosphere. Andean Geology, 39(3). https://doi.org/10.5027/andgeov39n3-a12

Readers over time

‘13‘14‘15‘16‘18‘20‘21‘2300.751.52.253

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 4

50%

Professor / Associate Prof. 2

25%

Lecturer / Post doc 1

13%

Researcher 1

13%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 9

90%

Arts and Humanities 1

10%

Save time finding and organizing research with Mendeley

Sign up for free
0