Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems

12Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cereal/legume intercropping is becoming a popular production strategy for higher crop yields and net profits with reduced inputs and environmental impact. However, the effects of different spatial arrangements on the growth, grain yield, nitrogen uptake, and land-use advantage of wheat/soybean relay intercropping are still unclear, particularly under arid irrigated conditions. Therefore, in a three-year field study from 2018 to 2021, soybean was relay intercropped with wheat in different crop configurations (0.9 m, narrow strips; 1.8 m, medium strips; and 2.7 m, wide strips), and the results of intercropping systems were compared with their sole systems. Results revealed that intercrops with wide strips outperformed the narrow and medium strips, when the objective was to obtain higher total leaf area, dry matter, nitrogen uptake, and grain yield on a given land area due to reduced interspecific competition between intercrops. Specifically, at maturity, wide strips increased the dry matter accumulation (37% and 58%) and its distribution in roots (37% and 55%), straw (40% and 61%), and grains (30% and 46%) of wheat and soybean, respectively, compared to narrow strips. This enhanced dry matter in wide strips improved the soybean’s competitive ability (by 17%) but reduced the wheat’s competitive ability (by 12%) compared with narrow strips. Noticeably, all intercropping systems accumulated a significantly higher amount of nitrogen than sole systems, revealing that wheat/soybean relay intercropping requires fewer anthropogenic inputs (nitrogen) and exerts less pressure on the ecosystem than sole systems. Overall, in wide strips, intercropped wheat and soybean achieved 62% and 71% of sole wheat and soybean yield, respectively, which increased the greater total system yield (by 19%), total land equivalent ratio (by 24%), and net profit (by 34%) of wide strips compared to narrow strips. Our study, therefore, implies that the growth parameters, grain yields, nutrient accumulation, and land-use advantage of intercrop species could be improved with the proper spatial arrangement in cereal/legume intercropping systems.

References Powered by Scopus

Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology

937Citations
N/AReaders
Get full text

Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients

478Citations
N/AReaders
Get full text

Syndromes of production in intercropping impact yield gains

394Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Sugarcane/soybean intercropping enhances crop productivity, nutrient uptake, and net economic return with reduced inputs

3Citations
N/AReaders
Get full text

Legume choice and planting configuration influence intercrop nutrient and yield gains through complementarity and selection effects in legume-based wheat intercropping systems

1Citations
N/AReaders
Get full text

Optimizing Soybean Crop Performance through the Integrated Application of Organic and Chemical Fertilizers: A Study on Alkaline Soil in Afghanistan

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Raza, M. A., Din, A. M. U., Zhiqi, W., Gul, H., Ur Rehman, S., Bukhari, B., … Zhongming, M. (2023). Spatial differences influence nitrogen uptake, grain yield, and land-use advantage of wheat/soybean relay intercropping systems. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-43288-3

Readers over time

‘23‘24‘2506121824

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

56%

Researcher 2

22%

Professor / Associate Prof. 1

11%

Lecturer / Post doc 1

11%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 7

78%

Environmental Science 2

22%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0