A customer’s decision to purchase a product or service are primarily influenced by online reviews. Customers use online reviews, which are valuable sources of information to understand the public opinion on products and/or services. Dependability on online reviews can give rise to the potential concern that violator could give deceitful reviews in order to synthetically promote or decry products and services. This practice is known as Opinion Spam, where spammers manipulate reviews by making fake, untruthful, or deceptive reviews to get profit and boost their products, and devalue a competitor’s products. In order to tackle this issue, we propose to build a fraud risk management system and removal model. This captures fraudulent transactions based on user behaviors and network, analyses them in real-time using Data Mining, and accurately predicts the suspicious users and transactions. In this system, we use two algorithms NLP and TF-IDF to differentiate between fake and genuine reviews or feedback received by the customers
CITATION STYLE
Patil, M. M., Nikumbh, S. N., & Parigond, A. P. (2021). Fake Product Monitoring and Removal for Genuine Product Feedback. International Journal of Emerging Science and Engineering, 7(1), 1–3. https://doi.org/10.35940/ijese.a2494.037121
Mendeley helps you to discover research relevant for your work.