Thermodynamic analysis of a novel integrated biomass pyrolysis-solid oxide fuel cells-combined heat and power system for co-generation of biochar and power

1Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Biochar derived from pyrolysis or gasification has been gaining significant attention in the recent years due to its potential wide applications for the development of negative emissions technologies. A new concept was developed for biochar and power co-generation system using a combination of biomass pyrolysis (BP) unit, solid oxide fuel cells (SOFCs), and a combined heat and power (CHP) system. A set of detailed experimental data of pyrolysis product yields was established in Aspen Plus to model the BP process. The impacts of various operating parameters including current density ((Formula presented.)), fuel utilization factor ((Formula presented.)), pyrolysis gas reforming temperature ((Formula presented.)), and biochar split ratio ((Formula presented.)) on the SOFC and overall system performances in terms of energy and exergy analyses were evaluated. The simulation results indicated that increasing the (Formula presented.), (Formula presented.), and (Formula presented.) can favorably improve the performances of the BP-SOFC-CHP system. As a whole, the overall electrical, energy and exergy efficiencies of the BP-SOFC-CHP system were in the range of 8–14%, 76–78%, and 71–74%, respectively. From the viewpoint of energy balance, burning the reformed pyrolysis gas can supply enough energy demand for the process to achieve a stand-alone BP-SOFC-CHP plant. In case of a stand-alone system, the overall electrical, energy and exergy efficiencies were 5.4, 63.9 and 57.8%, respectively, with a biochar yield of 31.6%.

Cite

CITATION STYLE

APA

Kuo, P. C., Illathukandy, B., Özdemir, F., Woudstra, T., & Aravind, P. V. (2022). Thermodynamic analysis of a novel integrated biomass pyrolysis-solid oxide fuel cells-combined heat and power system for co-generation of biochar and power. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.731191

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free