Abstract
When spin-orbit coupling (SOC) is absent, all proposed half-metals with twofold degenerate nodal points at the K (or K′) point in 2D materials are classified as “Dirac half-metals” owing to the way graphene is utilized in the earliest studies. Actually, each band crossing point at the K or K′ point is described by a 2D Weyl Hamiltonian with definite chirality; hence, it should be a Weyl point. To the best of its knowledge, there have not yet been any reports of a genuine (i.e., fourfold degenerate) 2D Dirac point half-metal. In this work, using first-principles calculations, it proposes for the first time that the 2D d0-type ferromagnet Mg4N4 is a genuine 2D Dirac half-metal candidate with a fourfold degenerate Dirac point at the S high-symmetry point, intrinsic magnetism, a high Curie temperature, 100% spin polarization, topology robust under the SOC and uniaxial and biaxial strains, and spin-polarized edge states. This work can serve as a starting point for future predictions of intrinsically magnetic materials with genuine 2D Dirac points, which will aid the frontier of topo-spintronics research in 2D systems.
Author supplied keywords
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.
Cite
CITATION STYLE
Gong, J., Ding, G., Xie, C., Wang, W., Liu, Y., Zhang, G., & Wang, X. (2024). Genuine Dirac Half-Metals in Two-Dimensions. Advanced Science, 11(6). https://doi.org/10.1002/advs.202307297