TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice

115Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Activation of transient receptor potential vanilloid 4 (TRPV4) induces neuronal injury. TRPV4 activation enhances inflammatory response and promotes the proinflammatory cytokine release in various types of tissue and cells. Hyperneuroinflammation contributes to neuronal damage in epilepsy. Herein, we examined the contribution of neuroinflammation to TRPV4-induced neurotoxicity and its involvement in the inflammation and neuronal damage in pilocarpine model of temporal lobe epilepsy in mice. Icv. injection of TRPV4 agonist GSK1016790A (GSK1016790A-injected mice) increased ionized calcium binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) protein levels and Iba-1-positive (Iba-1+) and GFAP-positive (GFAP+) cells in hippocampi, which indicated TRPV4-induced microglial cell and astrocyte activation. The protein levels of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome components NLRP3, apoptosis-related spotted protein (ASC) and cysteinyl aspartate-specific protease-1 (caspase-1) were increased in GSK1016790A-injected mice, which indicated NLRP3 inflammasome activation. GSK1016790A also increased proinflammatory cytokine IL-1β, TNF-α and IL-6 protein levels, which were blocked by caspase-1 inhibitor Ac-YVAD-cmk. GSK1016790A-induced neuronal death was attenuated by Ac-YVAD-cmk. Icv. injection of TRPV4-specific antagonist HC-067047 markedly increased the number of surviving cells 3 d post status epilepticus in pilocarpine model of temporal lobe epilepsy in mice (pilocarpine-induced status epilepticus, PISE). HC-067047 also markedly blocked the increase in Iba-1 and GFAP protein levels, as well as Iba-1+ and GFAP+ cells 3 d post-PISE. Finally, the increased protein levels of NLRP3, ASC and caspase-1 as well as IL-1β, TNF-α and IL-6 were markedly blocked by HC-067047. We conclude that TRPV4-induced neuronal death is mediated at least partially by enhancing the neuroinflammatory response, and this action is involved in neuronal injury following status epilepticus.

References Powered by Scopus

Modification of seizure activity by electrical stimulation: II. Motor seizure

6242Citations
N/AReaders
Get full text

The role of inflammation in epilepsy

1487Citations
N/AReaders
Get full text

Inflammasome signalling in brain function and neurodegenerative disease

583Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis

115Citations
N/AReaders
Get full text

Mechanobiology of the brain in ageing and Alzheimer's disease

80Citations
N/AReaders
Get full text

NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi

71Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Wang, Z., Zhou, L., An, D., Xu, W., Wu, C., Sha, S., … Chen, L. (2019). TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death and Disease, 10(6). https://doi.org/10.1038/s41419-019-1612-3

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 29

63%

Researcher 12

26%

Professor / Associate Prof. 5

11%

Readers' Discipline

Tooltip

Neuroscience 18

38%

Biochemistry, Genetics and Molecular Bi... 17

36%

Pharmacology, Toxicology and Pharmaceut... 6

13%

Medicine and Dentistry 6

13%

Save time finding and organizing research with Mendeley

Sign up for free