Paleointensity applications to timing and extent of eruptive activity, 9°-10°N East Pacific rise

45Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Placing accurate age constraints on near-axis lava flows has become increasingly important given the structural and volcanic complexity of the neovolcanic zone at fast spreading ridges. Geomagnetic paleointensity of submarine basaltic glass (SBG) holds promise for placing quantitative age constraints on near-axis flows. In one of the first extensive tests of paleointensity as a dating tool or temporal marker we present the results of over 550 successful SBG paleointensity estimates from 189 near-axis (<4 km) sites at the East Pacific Rise, 9°-10°N. Paleointensities range from 6 to 53 μT and spatially correspond to the pattern expected from known temporal variations in the geomagnetic field. Samples within and adjacent to the axial summit trough (AST) have values approximately equal to or slightly higher than the present-day. Samples out to 1 - 3 km from the AST have values higher than the present-day, and samples farther off axis have values lower than the present-day. The on-axis samples (<500 m from the AST) provide a test case for using models of paleofield variation for the past few hundred years as an absolute dating technique. Results from samples collected near a well-documented eruption in 1991 - 1992 suggest there may be a small negative bias in the paleointensity estimates, limiting resolution of the dating technique. Possible explanations for such a bias include local field anomalies produced by preexisting magnetic terrain; anomalously high magnetic unblocking temperatures, leading to a small cooling rate bias; and/or the possibility of a chemical remanence produced by in situ alteration of samples likely to have complicated thermal histories. Paleointensity remains useful in approximating age differences in young flows, and a clear along-axis paleointensity contrast near 9°50′N is suggestive of a ∼150-200 year age difference. Paleointensity values of off-axis samples are generally consistent with rough age interpretations based on side scan data. Furthermore, spatial patterns in the paleointensity suggest extensive off-axis flow emplacement may occur infrequently, with recurrence intervals of 10-20 kyr. Results of a stochastic model of lava emplacement show that this can be achieved with a single distribution of flows, with flow size linked to time between eruptions. Copyright 2006 by the American Geophysical Union.

References Powered by Scopus

Extended <sup>14</sup>C data base and revised CALIB 3.0 <sup>14</sup>C age calibration program

7345Citations
N/AReaders
Get full text

IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

3403Citations
N/AReaders
Get full text

Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic

3282Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale

231Citations
N/AReaders
Get full text

On improving the selection of Thellier-type paleointensity data

172Citations
N/AReaders
Get full text

GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database Recent advances in environmental magnetism and paleomagnetism

153Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Bowles, J., Gee, J. S., Kent, D. V., Perfit, M. R., Soule, S. A., & Fornari, D. J. (2006). Paleointensity applications to timing and extent of eruptive activity, 9°-10°N East Pacific rise. Geochemistry, Geophysics, Geosystems, 7(6). https://doi.org/10.1029/2005GC001141

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 16

46%

Researcher 15

43%

Professor / Associate Prof. 3

9%

Lecturer / Post doc 1

3%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 33

92%

Physics and Astronomy 1

3%

Engineering 1

3%

Materials Science 1

3%

Save time finding and organizing research with Mendeley

Sign up for free