Fragmentation of Dicarboxylic and Tricarboxylic Acids in the Krebs Cycle Using GC-EI-MS and GC-EI-MS/MS

  • Okahashi N
  • Kawana S
  • Iida J
  • et al.
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Isotope labeling measurements using mass spectrometry can provide informative insights on the metabolic systems of various organisms. The detailed identification of carbon positions included in the fragment ions of dicarboxylic and tricarboxylic acids in central carbon metabolism is needed for precise interpretation of the metabolic states. In this study, fragment ions containing the carbon backbone cleavage of dicarboxylic and tricarboxylic in the Krebs cycle were investigated by using gas chromatography (GC)-electron ionization (EI)-MS and GC-EI-MS/MS. The positions of decarboxylation in the dicarboxylic and tricarboxylic acids were successfully identified by analyses using position-specific (13)C-labeled standards prepared by in vitro enzymatic reactions. For example, carboxyl groups of C1 and C6 of trimethylsilyl (TMS)- and tert-butyldimethylsilyl (TBDMS)-derivatized malic and citric acids were primarily cleaved by EI. MS/MS analyses were also performed, and fragment ions of TBDMS-citric and α-ketoglutaric acids (αKG) with the loss of two carboxyl groups in collision-induced dissociation (CID) were observed.

Cite

CITATION STYLE

APA

Okahashi, N., Kawana, S., Iida, J., Shimizu, H., & Matsuda, F. (2019). Fragmentation of Dicarboxylic and Tricarboxylic Acids in the Krebs Cycle Using GC-EI-MS and GC-EI-MS/MS. Mass Spectrometry, 8(1), A0073–A0073. https://doi.org/10.5702/massspectrometry.a0073

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free