Lake level fluctuations synchronize genetic divergences of cichlid fishes in African Lakes

194Citations
Citations of this article
234Readers
Mendeley users who have this article in their library.

Abstract

Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.

References Powered by Scopus

Some genetic consequences of ice ages, and their role in divergence and speciation

3356Citations
N/AReaders
Get full text

African populations and the evolution of human mitochondrial DNA

1011Citations
N/AReaders
Get full text

Cichlid fish diversity threatened by eutrophication that curbs sexual selection

980Citations
N/AReaders
Get full text

Cited by Powered by Scopus

African cichlid fish: A model system in adaptive radiation research

599Citations
N/AReaders
Get full text

Evolution through Genetic Exchange

406Citations
N/AReaders
Get full text

Ecological opportunity and sexual selection together predict adaptive radiation

374Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sturmbauer, C., Baric, S., Salzburger, W., Rüber, L., & Verheyen, E. (2001). Lake level fluctuations synchronize genetic divergences of cichlid fishes in African Lakes. Molecular Biology and Evolution, 18(2), 144–154. https://doi.org/10.1093/oxfordjournals.molbev.a003788

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 110

58%

Researcher 48

25%

Professor / Associate Prof. 29

15%

Lecturer / Post doc 4

2%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 157

80%

Environmental Science 21

11%

Biochemistry, Genetics and Molecular Bi... 13

7%

Medicine and Dentistry 5

3%

Article Metrics

Tooltip
Mentions
References: 6

Save time finding and organizing research with Mendeley

Sign up for free