Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts

877Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.

Abstract

Cultured fibroblasts derived from patients with homozygous familial hypercholesterolemia, which lack functional low density lipoprotein (LDL) receptors, fail to bind, take up, or degrade the lipoprotein with high affinity; therefore LDL cholesterol is not made available for suppression of cholesterol synthesis or activation of cholesteryl ester formation. When LDL was given a positive charge by reaction with N,N dimethyl 1,3 propanediamine (cationized LDL), the rate of degradation of the lipoprotein was increased by more than 100 fold in the homozygous familial hypercholesterolemia fibroblasts. Degradation of cationized LDL was inhibited by chloroquine, suggesting that it occurred in cellular lysosomes. Although the cationized LDL entered the cell through a mechanism independent of the LDL receptor, the cholesterol liberated from the degradation of the lipoprotein became available for suppression of cholesterol synthesis and stimulation of cholesteryl ester formation in the homozygous familial hypercholesterolemia fibroblasts. The rate of degradation of albumin by fibroblasts was also increased by more than 100 fold when this protein was coupled to N,N dimethyl 1,3 propanediamine. The ability to deliver a protein to lysosomes by giving it a strong positive charge may have potential relevance not only to familial hypercholesterolemia, but also to inborn errors of metabolism that involve deficiencies in lysosomal enzymes.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Basu, S. K., Goldstein, J. L., & Anderson andBrown, R. G. W. M. S. (1976). Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 73(9), 3178–3182. https://doi.org/10.1073/pnas.73.9.3178

Readers over time

‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘21‘22‘23‘24‘250481216

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 34

52%

Researcher 18

27%

Professor / Associate Prof. 11

17%

Lecturer / Post doc 3

5%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 30

47%

Biochemistry, Genetics and Molecular Bi... 16

25%

Medicine and Dentistry 14

22%

Chemistry 4

6%

Save time finding and organizing research with Mendeley

Sign up for free
0