A novel neural response algorithm for protein function prediction

5Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Background: Large amounts of data are being generated by high-throughput genome sequencing methods. But the rate of the experimental functional characterization falls far behind. To fill the gap between the number of sequences and their annotations, fast and accurate automated annotation methods are required. Many methods, such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of annotation specificity advocates the need to improve automated protein function prediction.Results: We designed a novel automated protein functional assignment method based on the neural response algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with accuracy of 86.93%.Conclusions: The proposed algorithm is the first instance of neural response algorithm being used in the biological domain. The use of HMM profiles along with the secondary structure information to define the neural response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/. © 2012 Yalamanchili et al.; licensee BioMed Central Ltd.

References Powered by Scopus

Basic local alignment search tool

79298Citations
N/AReaders
Get full text

Gapped BLAST and PSI-BLAST: A new generation of protein database search programs

63352Citations
N/AReaders
Get full text

Support-Vector Networks

46172Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The current status and challenges in computational analysis of genomic big data

32Citations
N/AReaders
Get full text

Data analysis pipeline for RNA-seq experiments: From differential expression to cryptic splicing

25Citations
N/AReaders
Get full text

SpliceNet: Recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples

19Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Yalamanchili, H. K., Xiao, Q. W., & Wang, J. (2012). A novel neural response algorithm for protein function prediction. BMC Systems Biology, 6(SUPPL.1). https://doi.org/10.1186/1752-0509-6-S1-S19

Readers over time

‘12‘13‘14‘15‘17‘19‘20‘21‘2302468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 11

79%

Researcher 3

21%

Readers' Discipline

Tooltip

Computer Science 7

47%

Agricultural and Biological Sciences 4

27%

Biochemistry, Genetics and Molecular Bi... 3

20%

Decision Sciences 1

7%

Save time finding and organizing research with Mendeley

Sign up for free
0