Collective Intelligence Application in a Kitting Picking Zone of the Automotive Industry

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The durability of an automobile factory depends on its flexibility and its evolution capacity to meet market expectations. These expectations tend increasingly to the vehicles’ customization. Therefore, automobile factories may be able to manufacture several vehicle models on the same assembly line. It makes automobile manufacturers face big logistic challenges in their production sites. They must be capable of simplifying, synchronizing and proposing intelligent and flexible logistic flow. Thus, digital tools for decision support are needed. This paper aims to propose an architecture to model the logistic process of supplying materials to the assembly line as a multiagent system. Thus, multiagent learning and collective intelligence techniques can be applied to guarantee a good performance of the process. The case study focuses on a kitting picking zone from a Renault production site which manufactures six different vehicle models, each one with its variants.

References Powered by Scopus

Evidence for a collective intelligence factor in the performance of human groups

1722Citations
N/AReaders
Get full text

Software agents: An overview

1028Citations
N/AReaders
Get full text

A Survey on Distributed Machine Learning

539Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Multi-agent system for perturbations in the kitting process of an automotive assembly line

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Zapata, S. M., Klement, N., Silva, C., Gibaru, O., & Lafou, M. (2023). Collective Intelligence Application in a Kitting Picking Zone of the Automotive Industry. In Lecture Notes in Mechanical Engineering (pp. 410–420). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-15928-2_36

Readers over time

‘22‘23‘2400.751.52.253

Save time finding and organizing research with Mendeley

Sign up for free
0