Engineered living composite materials

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Since the inception of fibre-reinforced composite materials, they have been widely acknowledged for their unparalleled weight-to-performance ratio. Nonetheless, concerns are escalating regarding the environmental impact of these materials amidst global warming and pollution. This perspective explores a ground-breaking shift towards harnessing living organisms to produce composite materials. Living composites not only offer sustainable, carbon-capturing alternatives but also afford an unprecedented level of control over shape and anisotropy. Recent advancements in biology, particularly genetic engineering and sequencing, have provided extraordinary control over living organisms. Coupled with ever-evolving additive manufacturing techniques, these breakthroughs enable the construction of engineered living materials from the ground up. Here, we explore the key factors propelling the emergence of engineered living materials for structural applications and delves into the capabilities of living organisms that can be harnessed for creating functional materials, including harvesting energy, forming structures, sensing/adapting, growing and remodelling. Incorporating living organisms can revolutionise manufacturing for renewable and sustainable composite materials, unlocking previously unattainable functionalities.

Cite

CITATION STYLE

APA

Nettersheim, I. H. M. S., Sotelo, N. S. G., Verdonk, J. C., & Masania, K. (2024, September 29). Engineered living composite materials. Composites Science and Technology. Elsevier Ltd. https://doi.org/10.1016/j.compscitech.2024.110758

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free