One of the key factors of a successfully implemented mixed-model line system is considering model sequencing problem as well as the line balancing problem. In the literature, there are many studies, which consider these two tightly interrelated problems individually. However, we integrate the model sequencing problem in the line balancing procedure to obtain a more efficient solution for the problem of Simultaneous Balancing and Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines. A mathematical model is developed to present the problem and a novel agent based ant colony optimisation approach is proposed as the solution method. Different agents interact with each other to find a near optimal solution for the problem. Each ant selects a random behaviour from a predefined list of heuristics and builds a solution using this behaviour as a local search rule along with the pheromone value. Different cycle times are allowed for different two-sided lines located in parallel to each other and this yields a complex problem where different production cycles need to be considered to build a feasible solution. The performance of the proposed approach is tested through a set of test cases. Experimental results indicate that considering model sequencing problem with the line balancing problem together helps minimise line length and total number of required workstations. Also, it is found that the proposed approach outperforms other three heuristics tested.
CITATION STYLE
Kucukkoc, I., & Zhang, D. Z. (2014). Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines. International Journal of Production Economics, 158, 314–333. https://doi.org/10.1016/j.ijpe.2014.08.010
Mendeley helps you to discover research relevant for your work.