High quality data sources are critical to scientists, engineers, and decision makers alike. The models that scientists develop and test with quality-assured data eventually become used by a wider community, from policy makers' long-term strategies based upon weather and climate predictions to emergency managers' decisions to deploy response crews. The process of developing high quality data in one network, the Oklahoma Mesonetwork (Mesonet) is detailed in this manuscript. The Oklahoma Mesonet quality-assurance procedures consist of four principal components: an instrument laboratory, field visits, automated computer routines, and manual inspection. The instrument laboratory ensures that all sensors that are deployed in the network measure up to high standards established by the Mesonet Steering Committee. Routine and emergency field visits provide a manual inspection of the performance of the sensors and replacement as necessary. Automated computer routines monitor data each day, set data flags as appropriate, and alert personnel of potential errors in the data. Manual inspection provides human judgment to the process, catching subtle errors that automated techniques may miss. The quality-assurance (QA) process is tied together through efficient communication links. A QA manager serves as the conduit through whom all questions concerning data quality flow. The QA manager receives daily reports from the automated system, issues trouble tickets to guide the technicians in the field, and issues summary reports to the broader community of data users. Technicians and other Mesonet staff remain in contact through cellular communications, pagers, and the World Wide Web. Together, these means of communication provide a seamless system: from identifying suspicious data, to field investigations, to feedback on action taken by the technician.
CITATION STYLE
Shafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., & Hughes, T. W. (2000). Quality assurance procedures in the Oklahoma Mesonetwork. Journal of Atmospheric and Oceanic Technology, 17(4), 474–494. https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2
Mendeley helps you to discover research relevant for your work.